55 Music Concourse Dr.
Golden Gate Park
San Francisco CA
94118
415.379.8000
Regular Hours:

Daily

9:30 am – 5:00 pm

Sunday

11:00 am – 5:00 pm
Members' Hours:

Tuesday

8:30 – 9:30 am

Sunday

10:00 – 11:00 am
Closures
Notices

The Academy will be closed on Thanksgiving and Christmas Day.

The Academy will be closing at 3:00 pm on 4/24. We apologize for any inconvenience.

Climate Change 

August 10, 2011

The art of climate change

When people think of batiks, many probably think of psychedelic wall hangings made in crafts class or at summer camp. They haven’t seen Mary Edna Fraser’s work. (read more…)

From Crave, the gadget blog from CNET.

 


Filed under: Climate Change — Peter @ 7:25 pm

July 14, 2011

Citizen Science Goes to Sea – Science Today

The Royal Navy was taught to be very thorough during World War I. At sea, despite battles and storms, they recorded the weather every four hours dutifully into logbooks.

Posting an oldie, but it’s a good story!


Filed under: Climate Change — Peter @ 7:52 pm

June 7, 2011

Bay Sea Level Rise – Science Today

The San Francisco Bay may soon feel the effects of sea level rise.


Filed under: Climate Change — Peter @ 3:01 pm

June 6, 2011

Of Glasshouses and the People who live in them

roop_PICT0022.JPG“On 15 May, USA Today reported that a controversial 2008 study in the journal Computational Statistics and Data Analysis (CSDA) was going to be retracted because parts of the article contain plagiarized material. … The study, Social networks of author-co-author relationships, analyzed the different styles of such networks and their implications for peer review. It grew out of work done for a report to Congress by statistician Edward Wegman of George Mason University. The so-called Wegman report said that paleoclimate studies done in 1998 and 1999 used poor statistical analyses. It also asserted that the authors may have benefited from favorable treatment by their peers who presumably reviewed the papers.” (read more here.)


Filed under: Climate Change — Peter @ 2:58 pm

May 20, 2011

Some comments on mathematics, models, etc.

roessler_attractor2

High school student Lyla asked in a comment on a previous post if I would be willing to answer a few questions regarding models for her class. The questions were excellent, so I’m posting them here, along with my answers. Thanks Lyla!

What is the role mathematics plays in understanding the implications of climate change?
Climate is very complicated, because it involves so many controlling factors and influences, many of which interact with each other, and because they operate on sometimes vastly different time scales (a few years to tens of thousands of years). Mathematical models help us to formalize what we know and understand about climate in a very precise manner, allowing us to ask “what if” questions, and essentially conduct experiments that could not otherwise actually be performed.

How is modeling used to help to predict the future of global warming?
One of the major influences on climate are greenhouse gas concentrations. Since those are climbing at alarming rates, and are the source of so much concern, we can increase their concentrations in models and see what the outcomes are. The ways in which we increase the concentrations are based on estimates of how much we think the concentrations will increase over time, like the next 100 years.

How can we stay educated and updated on recent research done about global warming?
There are several excellent blogs online dedicated to discussions of global warming (just Google “climate change blogs”), as well as websites for major organizations such as the IPCC, the NRDC, and the National Academy of Sciences. Some of these are more understandable than others, but they/we are all eager to explain what we are talking about.

What do you think is the most important thing high school students should know about global warming?
The most important thing? That is an interesting and difficult question. I think two things. First, we humans are the cause of the problem because of our huge rates of consumption. We consume too much energy, and we consume too many goods. We simply must learn how to get by with a little less! Second, this is your future, but it’s not far off. There is little point in blaming the past, since the past is the past. But we can work on the future, and we have to do it now. Global warming and the climate change that it is driving are happening now. The effects are already all around us, but it is not too late to get a reasonable handle on the problem. Be educated, concerned and pro-active. If you are, then you’re also allowed to be optimistic.


Filed under: Climate Change — Peter @ 8:54 pm

May 16, 2011

Science Today – Oil in the Gulf, one year later

Three local scientists describe their work in the Gulf after the largest oil spill in US history.


Filed under: Climate Change — Peter @ 7:55 pm

April 8, 2011

New York set to be big loser as sea levels rise

“New York is a major loser and Reykjavik a winner from new forecasts of sea level rise in different regions.” (read more here)


Filed under: Climate Change — Peter @ 7:11 pm

March 31, 2011

A lawyer, an economist and a marketing professor walk into — A Science Hearing!

Scientist Beloved by Climate Deniers Pulls Rug Out from Their Argument.Today, there was a climate science hearing in the House Committee on Science, Space, and Technology. Of the six “expert” witnesses, only three were scientists. The others were an economist, a lawyer, and a professor of marketing.” Read the full article here. (Good Magazine)


Filed under: Climate Change — Peter @ 5:02 pm

March 22, 2011

Biodiversity’s ills not all down to climate change

Biodiversity’s ills not all down to climate change.

This is an excellent interview with valuable insight based on a paper in an upcoming issue of Nature Climate Change. It highlights the complexities involved in attributing biodiversity changes, and ecological in general, to climate change and specific aspects of climate change. This is a difficult task as it is, requiring collection of large quantities of data, and understanding patterns and processes on spatial and temporal scales at the edge of ecological (and evolutionary) resolution. The task is made all the more difficult by the drive to provide “useful” data for policy makers and conservation managers, a theme all too frequently heard these days. But exactly what are useful data? A commonly held piece is the prediction of where a species will supposedly relocate to as climate continues to change. But making that prediction requires far more than identifying a species’ current climate requirements, because those are not the sole, and often not the most important factors that determine current distributions. Biotic interactions and their ecological contexts (chemistry, what other species are present, etc.) are usually paramount, and those are far more difficult to quantify and model. Furthermore, in a majority of cases, the foretold negative impacts of global warming are exacerbated by other agents of anthropogenic disturbance, such as habitat destruction, and most biological communities are already in states far from pristine and natural. Therefore, as climate change progresses, and continues to have an impact on species, we should, as recommended by the author, speak in terms of probabilities and likelihoods. It really is unfortunate that policy-makers, and the population in general, are uncomfortable with this. It’s simply the way that Nature is.


Filed under: Climate Change — Peter @ 5:55 am

March 18, 2011

Thoughts on Sendai

honshu

The earthquake that struck the Sendai region off the coast of Japan one week ago is one of the largest that we have ever measured; 9.0 on the moment magnitude scale. I’ve received many questions about this event, and have heard a lot of misinformation both in the media and on the internet. I’m therefore going to use a little space on my climate change blog to talk about this event, and also discuss its relevance to climate change. First, however, I want to pay my respects to all the victims, their families and friends, the rescue workers, and the people of Japan in general. This was a terrible disaster, the consequences of which will continue to be felt for sometime.

Now here are some facts:

1. The Sendai quake resulted from movement along a subduction zone, in a region where the oceanic Pacific plate meets the North American and Eurasian continental plates. Ocean plates of the Earth’s surface are composed primarily of basalt, and being denser than continental plates, will be subducted below the continental plates to be recycled in the Earth’s mantle layer. While it may be easy to visualize plate movements (plate tectonics) as dynamic and fluid, this is true only on very large spatial scales and on very long time scales. On the human time scale, these are immense masses of rock grinding against each other, and it is not at all smooth or fluid. The moment by moment movement is jittery, sticky and frictional. Stress built up in that region, and the plates finally started to slip last week, peaking at the 9.0 quake on March 11. Aftershocks continue to be felt. Note that an aftershock is not necessarily weaker than the initial quake; it simply follows as a result of the same release of stress. The 9.0 was, in fact, itself probably an aftershock of a 7.5 the day before.

2. It is unlikely that an earthquake of that magnitude will strike California, even along the dreaded San Andreas Fault. The San Andreas is a different type of fault, or crack in the Earth’s surface. Here, two plates are sliding past each other, and the fault itself is much shallower than the subduction zone off Japan. If and when the Big One occurs in northern or southern California, it is likely to be in the neighbourhood of 8.0.

3. 9.0, 8.0, both measured on the moment magnitude scale, NOT the Richter scale. The Richter scale is an older measure of Earth movement based on particular instrument measures. While apparently embedded in the media’s vocabulary, it is not a very useful scale at magnitudes beyond around 6.5. Therefore, a new scale, the moment magnitude scale, was formulated many years ago and it is based on the amount of energy released during an Earth movement. That energy is released mostly in the form of rock deformation, heat, and mechanical waves that travel through the Earth’s surface away from the source. We can measure the latter, and through careful calculations arrive at a measure of the total energy. For comparison, and for those of you who may remember it, the 1989 Loma Prieta quake that struck the San Francisco Bay area, magnitude 6.9, was about 1,000 times less energetic than the Sendai quake! The San Andreas Big One, at 8.0, would be about 32 times less powerful than Sendai, but about 45 times more powerful than Loma Prieta. These are powerful events!

4. A quake similar to the Sendai event is more likely to be generated by the Cascadia subduction zone that lies off the coasts of Oregon, Washington and British Columbia.

5. The Sendai quake generated a devastating tsunami that wreaked more havoc than the quake itself. Tsunamis are generated whenever large amounts of water are displaced, usually the result of large movements of the sea floor, as in Sendai, landslides, volcanism, or some combination of these. The Sendai tsunami was particularly deadly because of the proximity of the source to the coast, the rapid shallowing of the sea floor in that area, and the density of the human population. Like ripples in a pond, tsunamis radiate away from their sources at high speed, but are really perceptible only as they enter shallow water. The Sendai tsunami eventually caused damage in areas as far away as Hawaii, northern California, and the Galapagos Islands. This is not the first major tsunami to strike the region; a similar event struck in July, 869 C.E.

6. As I write, the U.S. Congress is considering a bill that would include a $900 million cut to the National Oceanographic and Atmospheric Administration, which administers the United States tsunami warning system. Implementation of the cut is up to NOAA’s top administrators, so write to them now and save your favourite system! Or, if you like surprises, select from among tsunami, hurricane, etc.

7. The tragedy at Sendai continues because of damage to the Fukushima Da’ichi nuclear power plant. Most of the critical damage is exacerbated by or results from failure of coolant pumping systems, and those systems in turn failed primarily because their supplemental fuel storages were swept away by the tsunami. Under current conditions, the amount of radiation that most people, anywhere, will receive from the plant is far less than what you would receive from daily exposure to natural sources in your environment, a trip to the dentist, or a CT scan.

Is any of this relevant to the climate change problem? Yes, for at least two reasons. First, coastal living is not without hazard. Flooding, storms, storm surges, sea level rise and tsunamis are among those hazards. All but the last of these are becoming more problematic as a consequence of global warming. The coasts of Japan are, like many other coastlines around the world; highly productive, economically important, and densely populated. The consequences of global warming are already being played out daily in places such as Bangladesh, Indonesia, and many low-lying oceanic islands.

Second, nuclear energy. I am firmly on the fence with this one. On the one hand, producing energy by nuclear fission generates heaps of highly radioactive wastes and, as current events bear witness, is an inherently risky business. But splitting an atom is very energetic, and produces no greenhouse gases. I am skeptical of solutions based solely on clean, renewable energy sources such as solar and wind energy, and here’s why. Those processes are far less energetic, given current technologies, than is nuclear and the burning of fossil fuels. Given the rate of ongoing global population growth, and our ever-increasing energy consumption, clean technologies simply cannot succeed. They cannot, that is, unless we also greatly increase the efficiency of our energy-consuming activities, and conserve, conserve, conserve. The time has come to make do with less. Until we do, our future will continue to depend on technologically archaic, dirty and dangerous energy production. And, if you wonder why energy-producing technology lags decades to more than a century behind health, communication, transportation and other technologies: money. When we demand better, and we are willing to pay for it, change will follow.


Filed under: Climate Change — Peter @ 3:26 pm
« Previous PageNext Page »

Academy Blogroll